129 research outputs found

    The effects of a sleep/recovery supplement: 'Night Time Recharge' on sleep parameters in young adults.

    Get PDF
    BACKGROUND: Concentrated cherry juice reportedly contains melatonin which, in turn, has been highlighted as an important regulator in initiating sleep. AIM: The present investigation aims to clarify whether Night Time Recharge (NTR), a marketed sleep aid containing cherry extract, improves key sleep parameters in young, active adults with mildly poor sleep. METHODS: A double-blind, randomized, placebo-controlled, cross-over study design was employed. Twenty participants (nine female) consumed either NTR or a placebo for seven days. Accelerometers were used to assess sleep quality and physical activity levels. Urinary levels of 6-sulphatoxymelatonin (6-SMT), a marker of melatonin synthesis, was assessed via enzyme-linked immunosorbent assay. RESULTS: 6-SMT levels increased following NTR treatment (28.95 ng/ml) compared with placebo (4.0 ng/ml) (p < 0.001). There was also a significant difference (p = 0.047) in dietary tryptophan consumption during the NTR treatment (1236 mg) versus placebo (1149 mg). No trace of melatonin was detected from our analysis of the supplement. NTR had no significant effect on any sleep parameters with the exception of sleep latency (p = 0.001). CONCLUSIONS: As chemical analysis of NTR by liquid-chromatography mass-spectrometry identified no detectable melatonin, the tryptophan content of the supplement is a likely reason for improvement in sleep latency. These results are in contrast to previous studies which have found a positive effect on sleep following cherry supplementation. Future work should focus on sleep latency and investigating whether cherry juice is effective in participants with problems in initiating sleep

    The effects of multiple features of alternatively spliced exons on the K(A)/K(S )ratio test

    Get PDF
    BACKGROUND: The evolution of alternatively spliced exons (ASEs) is of primary interest because these exons are suggested to be a major source of functional diversity of proteins. Many exon features have been suggested to affect the evolution of ASEs. However, previous studies have relied on the K(A)/K(S )ratio test without taking into consideration information sufficiency (i.e., exon length > 75 bp, cross-species divergence > 5%) of the studied exons, leading to potentially biased interpretations. Furthermore, which exon feature dominates the results of the K(A)/K(S )ratio test and whether multiple exon features have additive effects have remained unexplored. RESULTS: In this study, we collect two different datasets for analysis – the ASE dataset (which includes lineage-specific ASEs and conserved ASEs) and the ACE dataset (which includes only conserved ASEs). We first show that information sufficiency can significantly affect the interpretation of relationship between exons features and the K(A)/K(S )ratio test results. After discarding exons with insufficient information, we use a Boolean method to analyze the relationship between test results and four exon features (namely length, protein domain overlapping, inclusion level, and exonic splicing enhancer (ESE) frequency) for the ASE dataset. We demonstrate that length and protein domain overlapping are dominant factors, and they have similar impacts on test results of ASEs. In addition, despite the weak impacts of inclusion level and ESE motif frequency when considered individually, combination of these two factors still have minor additive effects on test results. However, the ACE dataset shows a slightly different result in that inclusion level has a marginally significant effect on test results. Lineage-specific ASEs may have contributed to the difference. Overall, in both ASEs and ACEs, protein domain overlapping is the most dominant exon feature while ESE frequency is the weakest one in affecting test results. CONCLUSION: The proposed method can easily find additive effects of individual or multiple factors on the K(A)/K(S )ratio test results of exons. Therefore, the system can analyze complex conditions in evolution where multiple features are involved. More factors can also be added into the system to extend the scope of evolutionary analysis of exons. In addition, our method may be useful when orthologous exons can not be found for the K(A)/K(S )ratio test

    A re-appraisal of the reliability of the 20 m multi-stage shuttle run test

    Get PDF
    This is the author's PDF version of an article published in European journal of applied physiology in 2007. The original publication is available at www.springerlink.co

    Localizing triplet periodicity in DNA and cDNA sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The protein-coding regions (coding exons) of a DNA sequence exhibit a triplet periodicity (TP) due to fact that coding exons contain a series of three nucleotide codons that encode specific amino acid residues. Such periodicity is usually not observed in introns and intergenic regions. If a DNA sequence is divided into small segments and a Fourier Transform is applied on each segment, a strong peak at frequency 1/3 is typically observed in the Fourier spectrum of coding segments, but not in non-coding regions. This property has been used in identifying the locations of protein-coding genes in unannotated sequence. The method is fast and requires no training. However, the need to compute the Fourier Transform across a segment (window) of arbitrary size affects the accuracy with which one can localize TP boundaries. Here, we report a technique that provides higher-resolution identification of these boundaries, and use the technique to explore the biological correlates of TP regions in the genome of the model organism <it>C. elegans</it>.</p> <p>Results</p> <p>Using both simulated TP signals and the real <it>C. elegans </it>sequence F56F11 as an example, we demonstrate that, (1) Modified Wavelet Transform (MWT) can better define the boundary of TP region than the conventional Short Time Fourier Transform (STFT); (2) The scale parameter (a) of MWT determines the precision of TP boundary localization: bigger values of a give sharper TP boundaries but result in a lower signal to noise ratio; (3) RNA splicing sites have weaker TP signals than coding region; (4) TP signals in coding region can be destroyed or recovered by frame-shift mutations; (5) 6 bp periodicities in introns and intergenic region can generate false positive signals and it can be removed with 6 bp MWT.</p> <p>Conclusions</p> <p>MWT can provide more precise TP boundaries than STFT and the boundaries can be further refined by bigger scale MWT. Subtraction of 6 bp periodicity signals reduces the number of false positives. Experimentally-introduced frame-shift mutations help recover TP signal that have been lost by possible ancient frame-shifts. More importantly, TP signal has the potential to be used to detect the splice junctions in fully spliced mRNA sequence.</p

    Evolution of Alternative Splicing Regulation: Changes in Predicted Exonic Splicing Regulators Are Not Associated with Changes in Alternative Splicing Levels in Primates

    Get PDF
    Alternative splicing is tightly regulated in a spatio-temporal and quantitative manner. This regulation is achieved by a complex interplay between spliceosomal (trans) factors that bind to different sequence (cis) elements. cis-elements reside in both introns and exons and may either enhance or silence splicing. Differential combinations of cis-elements allows for a huge diversity of overall splicing signals, together comprising a complex ‘splicing code’. Many cis-elements have been identified, and their effects on exon inclusion levels demonstrated in reporter systems. However, the impact of interspecific differences in these elements on the evolution of alternative splicing levels has not yet been investigated at genomic level. Here we study the effect of interspecific differences in predicted exonic splicing regulators (ESRs) on exon inclusion levels in human and chimpanzee. For this purpose, we compiled and studied comprehensive datasets of predicted ESRs, identified by several computational and experimental approaches, as well as microarray data for changes in alternative splicing levels between human and chimpanzee. Surprisingly, we found no association between changes in predicted ESRs and changes in alternative splicing levels. This observation holds across different ESR exon positions, exon lengths, and 5′ splice site strengths. We suggest that this lack of association is mainly due to the great importance of context for ESR functionality: many ESR-like motifs in primates may have little or no effect on splicing, and thus interspecific changes at short-time scales may primarily occur in these effectively neutral ESRs. These results underscore the difficulties of using current computational ESR prediction algorithms to identify truly functionally important motifs, and provide a cautionary tale for studies of the effect of SNPs on splicing in human disease

    Candidate Screening of the TRPC3 Gene in Cerebellar Ataxia

    Get PDF
    The hereditary cerebellar ataxias are a diverse group of neurodegenerative disorders primarily characterised by loss of balance and coordination due to dysfunction of the cerebellum and its associated pathways. Although many genetic mutations causing inherited cerebellar ataxia have been identified, a significant percentage of patients remain whose cause is unknown. The transient receptor potential (TRP) family member TRPC3 is a non-selective cation channel linked to key signalling pathways that are affected in cerebellar ataxia. Furthermore, genetic mouse models of TRPC3 dysfunction display cerebellar ataxia, making the TRPC3 gene an excellent candidate for screening ataxic patients with unknown genetic aetiology. Here, we report a genetic screen for TRPC3 mutations in a cohort of 98 patients with genetically undefined late-onset cerebellar ataxia and further ten patients with undefined episodic ataxia. We identified a number of variants but no causative mutations in TRPC3. Our findings suggest that mutations in TRPC3 do not significantly contribute to the cause of late-onset and episodic human cerebellar ataxias

    SNPs Occur in Regions with Less Genomic Sequence Conservation

    Get PDF
    Rates of SNPs (single nucleotide polymorphisms) and cross-species genomic sequence conservation reflect intra- and inter-species variation, respectively. Here, I report SNP rates and genomic sequence conservation adjacent to mRNA processing regions and show that, as expected, more SNPs occur in less conserved regions and that functional regions have fewer SNPs. Results are confirmed using both mouse and human data. Regions include protein start codons, 3′ splice sites, 5′ splice sites, protein stop codons, predicted miRNA binding sites, and polyadenylation sites. Throughout, SNP rates are lower and conservation is higher at regulatory sites. Within coding regions, SNP rates are highest and conservation is lowest at codon position three and the fewest SNPs are found at codon position two, reflecting codon degeneracy for amino acid encoding. Exon splice sites show high conservation and very low SNP rates, reflecting both splicing signals and protein coding. Relaxed constraint on the codon third position is dramatically seen when separating exonic SNP rates based on intron phase. At polyadenylation sites, a peak of conservation and low SNP rate occurs from 30 to 17 nt preceding the site. This region is highly enriched for the sequence AAUAAA, reflecting the location of the conserved polyA signal. miRNA 3′ UTR target sites are predicted incorporating interspecies genomic sequence conservation; SNP rates are low in these sites, again showing fewer SNPs in conserved regions. Together, these results confirm that SNPs, reflecting recent genetic variation, occur more frequently in regions with less evolutionarily conservation

    Melusin gene (ITGB1BP2) nucleotide variations study in hypertensive and cardiopathic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Melusin is a muscle specific signaling protein, required for compensatory hypertrophy response in pressure-overloaded heart. The role of Melusin in heart function has been established both by loss and gain of function experiments in murine models. With the aim of verifying the hypothesis of a potential role of the Melusin encoding gene, <it>ITGB1BP2</it>, in the modification of the clinical phenotype of human cardiomyopathies, we screened the <it>ITGB1BP2 </it>gene looking for genetic variations possibly associated to the pathological phenotype in three selected groups of patients affected by hypertension and dilated or hypertrophic cardiomyopathy</p> <p>Methods</p> <p>We analyzed <it>ITGB1BP2 </it>by direct sequencing of the 11 coding exons and intron flanking sequences in 928 subjects, including 656 hypertensive or cardiopathic patients and 272 healthy individuals.</p> <p>Results</p> <p>Only three nucleotide variations were found in patients of three distinct families: a C>T missense substitution at position 37 of exon 1 causing an amino acid change from His-13 to Tyr in the protein primary sequence, a duplication (IVS6+12_18dupTTTTGAG) near the 5'donor splice site of intron 6, and a silent 843C>T substitution in exon 11.</p> <p>Conclusions</p> <p>The three variations of the <it>ITGB1BP2 </it>gene have been detected in families of patients affected either by hypertension or primary hypertrophic cardiomyopathy; however, a clear genotype/phenotype correlation was not evident. Preliminary functional results and bioinformatic analysis seem to exclude a role for IVS6+12_18dupTTTTGAG and 843C>T in affecting splicing mechanism.</p> <p>Our analysis revealed an extremely low number of variations in the <it>ITGB1BP2 </it>gene in nearly 1000 hypertensive/cardiopathic and healthy individuals, thus suggesting a high degree of conservation of the melusin gene within the populations analyzed.</p

    Depletion of somatic mutations in splicing-associated sequences in cancer genomes

    Get PDF
    Abstract Background An important goal of cancer genomics is to identify systematically cancer-causing mutations. A common approach is to identify sites with high ratios of non-synonymous to synonymous mutations; however, if synonymous mutations are under purifying selection, this methodology leads to identification of false-positive mutations. Here, using synonymous somatic mutations (SSMs) identified in over 4000 tumours across 15 different cancer types, we sought to test this assumption by focusing on coding regions required for splicing. Results Exon flanks, which are enriched for sequences required for splicing fidelity, have ~ 17% lower SSM density compared to exonic cores, even after excluding canonical splice sites. While it is impossible to eliminate a mutation bias of unknown cause, multiple lines of evidence support a purifying selection model above a mutational bias explanation. The flank/core difference is not explained by skewed nucleotide content, replication timing, nucleosome occupancy or deficiency in mismatch repair. The depletion is not seen in tumour suppressors, consistent with their role in positive tumour selection, but is otherwise observed in cancer-associated and non-cancer genes, both essential and non-essential. Consistent with a role in splicing modulation, exonic splice enhancers have a lower SSM density before and after controlling for nucleotide composition; moreover, flanks at the 5’ end of the exons have significantly lower SSM density than at the 3’ end. Conclusions These results suggest that the observable mutational spectrum of cancer genomes is not simply a product of various mutational processes and positive selection, but might also be shaped by negative selection

    Effect of BRCA2 sequence variants predicted to disrupt exonic splice enhancers on BRCA2 transcripts

    Get PDF
    Background: Genetic screening of breast cancer patients and their families have identified a number of variants of unknown clinical significance in the breast cancer susceptibility genes, BRCA1 and BRCA2. Evaluation of such unclassified variants may be assisted by web-based bioinformatic prediction tools, although accurate prediction of aberrant splicing by unclassified variants affecting exonic splice enhancers (ESEs) remains a challenge
    corecore